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ON LINEAR CONJUGATION PROBLEMS WITH THE

DOUBLY PERIODIC JUMP LINE

N. KHATIASHVILI

Abstract. The linear conjugation problem for the class of linearly
doubly quasi-periodic and exponentially doubly quasi-periodic func-
tions is considered. The effective solutions are obtained by means of
the Cauchy type integral with the Weierstrass kernel.

îâäæñéâ. öâïû�ãèæèæ� ûîòæãæ öâñ�èâ�æï �éëù�ê� ëî�áìâîæ-

ëáñèæ ê�ýðëéæï ûæîæå ûîòæã�á çã�äæëî�áìâîæëáñè á� âóïìë-

êâêùæ�èñî�á çã�äæëî�áìâîæëáñè òñêóùæ�å� çè�ïâ�öæ.

Introduction

The linear conjugation problem for the different class of functions when
the jump line consists of the countable number of contours where considered
by numerous of authors [1], [3], [4], [5], [6], [8], [9], [12].

The Cauchy type integrals with the Weierstrass kernel was first consid-
ered by Sedov [12]. By means of this integrals he had successfully solved
several doubly-periodic problems of hydrodynamics.

By means of the Cauchy type integrals with the Weierstrass kernel Chibri-
cova [5] had solved the linear conjugation problem with the doubly-periodic
jump line for the class of the doubly-periodic functions.

The linear conjugation problem on the Riemann surfaces for the class of
the doubly-periodic functions was studied by Zverovich [14].

The effective solutions of the singular integral equation with the Weier-
stass kernel was obtained by the author in the case of segments [8].

In this paper are introduced the new class of functions: linearly doubly
quasi-periodic and exponentially doubly quasi-periodic and the linear con-
jugation problem with the doubly-periodic jump line for this type of classes
is studied. This new classes are more general and involve the class of the
doubly-periodic functions. The problems considered in this work are solved
by means of the Cauchy integral with the Weierstrass kernel. This case is
closely connected with the various problems of the mathematical physics.
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1. The Doubly-Periodic and Linearly Doubly Quasi-Periodic

Functions

Consider a complex z-plane, z = x+iy and two complex numbers ω1 and
iω2 satisfying the condition Im iω2

ω1
> 0. Let us introduce some notations:

Definition 1.1. The line L is called the doubly-periodic line if it is a
union of a countable number of smooth non-intersected contours Lj

mn, j =
1, 2, . . . , k; m, n = 0,±1, . . . doubly-periodically distributed with periods
2ω1 and 2iω2 in the whole z-plane

L =

∞
∑

m,n=−∞

Lmn, Lmn =

k
∑

j=1

Lj
mn, Lj1

mn ∩ Lj2
mn = ∅; j1 6= j2. (1.1)

If the contours Lj
mn are open, then by S we denote z-plane cut along L.

If the contours Lj
mn are closed,then the positive direction for every smooth

closed contour is chosen counter-clockwise, the domain interior for every
Lj

mn is denoted by S+
mnj . The union of this domains is denoted by S+, by

S− we denote the part of z-plane which is the complement of S+ + L.
We now recall some definitions from the theory of an elliptic functions

[2], [7], [9], [13].

Definition 1.2. The region D of z-plane is called doubly-periodic region
if z ∈ D implies z + 2mω1 + 2niω2 ∈ D, m, n = 0,±1, . . . .

The points z and z + 2mω1 + 2niω2 ∈ D, m, n = 0,±1, . . . are called the
congruent points.

For example, the areas S+ and S− defined above are the doubly periodic
regions.

Definition 1.3. A function F0(z) defined in the doubly-periodic domain
D (or on the doubly-periodic line) is called doubly quasi-periodic with the
periods 2ω1 and 2iω2 if the following condition is fulfilled

F0(z + 2mω1 + 2niω2) = F0(z) + mγ1 + nγ2, m, n = 0,±1, . . . . (1.2)

γ1 and γ2 are the definite constants, called the addends [9], [13].
If γ1 = γ2 = 0 the function F0(z) is called a doubly-periodic function.

Definition 1.4. The doubly-periodic meromorphic function is called an
elliptic function [2], [7], [9], [13].

The parallelogram with the vertexes 0, 2ω1, 2ω1 + 2iω2, 2iω2 is called the
fundamental parallelogram (the sides [2ω1, 2ω1+2iω2] and [2ω1+2iω2, 2iω2]
are excluded), the interior domain of this parallelogram we denote by S00.

The number of poles of an elliptic function in the fundamental parallel-
ogram is called the order of this function.

Theorem 1.1 (Liuvill). The elliptic function holomorphic in every finite
region of z-plane is a constant [2], [7], [9], [13].
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Theorem 1.2. There not exists the non-zero elliptic function of the first
order [2], [7].

Theorem 1.3 (Liuvill). Every elliptic function of the n-th order (n > 1)
riches each of its value in the fundamental parallelogram n times [2], [7],
[9], [13].

From this theorem follows that in the fundamental parallelogram the
number of poles and zeros of an elliptic function are equal.

By the Definition 1.3 follows

Theorem 1.4. If the doubly quasi-periodic function is differentiable
in its domain of definition, then the first derivative of this function is the
doubly-periodic function.

By the Theorems 1.1 and 1.4 we immediately get

Theorem 1.5. The doubly quasi-periodic function holomorphic in every
finite region of z-plane is representable in the form

F0(z) = Az + B,

where A and B are an arbitrary constants, the addends of this function are
γ1 = 2Aω1 and γ2 = 2Aiω2. as

Definition 1.5. The function representable by the doubly series

ζ(z) =
1

z
+

∞
∑

m,n=−∞

( 1

z − Tmn

+
1

Tmn

+
z

T 2
mn

)

, |m| + |n| 6= 0,

Tmn = 2mω1 + 2niω2,

(1.3)

is called the Weierstrass “ζ-function” for the periods 2ω1 and 2iω2 [2], [7],
[9], [13].

The series (1.3) is equiconvergent in every closed region of z-plane not
containing the points Tmn = 2mω1 + 2niω2; m, n = 0,±1, . . . .

The Weierstrass “ζ- function” has the following properties:
1. It is meromorphic function with the simple poles Tmn,

m, n = 0,±1, . . . ;
2. ζ(z) is doubly quasi-periodic,

ζ(z + 2ω1) = ζ(z) + δ1, ζ(z + 2iω2) = ζ(z) + δ2,

δ1 = 2ζ(ω1), δ2 = 2ζ(iω2), iω2δ1 − ω1δ2 = πi,
(1.4)

where δ1 and δ2 are the addends of “ζ-function”.

Definition 1.6. The function σ(z) given by the infinite product

σ(z) = z

∞
∏

m,n=−∞

(

1 −
z

Tmn

)

exp

{

1

Tmn

+
z2

2T 2
mn

}

, |m| + |n| 6= 0,

is called the Weierstrass “σ-function” for the periods 2ω1 and 2iω2 [2], [7],
[9], [13].
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σ function is the holomorphic function with simple zeros at the points
z = Tmn (m, n = 0,±1,±2, . . . ).

“σ-function” has the following properties

1. σ(z + 2ω1) = −σ(z) exp(δ1z + δ1ω1) ,

2. σ(z + 2iω2) = −σ(z) exp(δ2z + δ2iω2).
(1.5)

“σ-function” is not doubly quasi-periodic, but by means of it any elliptic
function can be constructed [2], [7], [9], [13].

Theorem 1.6. Every elliptic function F (z) of the n order (n > 1) with
zeros α2, . . . , αn and poles β1, β2, . . . , βn in the fundamental parallelogram
can be represented in the form

F (z) = C
σ(z − α1)σ(z − α2) · · ·σ(z − αn)

σ(z − β1)σ(z − β2) · · ·σ(z − βn)
,

where α1 = (β1 + β2 + · · ·+ βn)− (α2 + · · ·+ αn), C is an arbitrary chosen
constant.

Let us introduce the new class of functions

Definition 1.7. A function F (z) defined in the doubly-periodic domain
D is called polynomially doubly quasi-periodic of k-order with the periods
2ω1 and 2iω2 if the following conditions are fulfilled

F (z+2ω1)=F (z)+Pk1
(z), F (z+2iω2)=F (z)+Qk2

(z), z ∈ D,

where Pk1
, Qk2

, are the definite polynomials of degree k1 and k2 respectively,
k = max(k1, k2). This polynomials we call the proper polynomials of the
function F (z).

This class of functions we denote by P(k).
The class P(0) is the class of doubly quasi-periodic functions.
The sub-class of the class P(0) in the case Pk1

= Qk2
= 0 we denote by

P0(0) and call the class of doubly-periodic functions.

The sub-class of the class of polynomially doubly quasi-periodic functions
is the class of linearly doubly quasi-periodic functions P(1):

Definition 1.8. A function F (z) defined in the doubly-periodic domain
D is called linearly doubly quasi-periodic with the periods 2ω1 and 2iω2 if
the following conditions are fulfilled

F (z + 2ω1) = F (z) + A1z + C1, F (z + 2iω2) = F (z) + A2z + C2,

where A1, C1, A2, C2 are the definite constants.

In this case Pk1
= A1z + C1, Qk2

= A2z + C2.

Example. Let a be any point of z-plane not belonging to the area S+

and let us consider the branch of the function lnσ(z − a) holomorphic one-
valued in S+,satisfying the conditions

1. lnσ(z − a + 2ω1) = lnσ(z − a) + ln(−1) + δ1z + δ1ω1,

2. lnσ(z + 2iω2) = lnσ(z − a) + ln(−1) + δ2z + δ2iω2.
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Taking into account the properties of σ function (1.5) by direct verification
we conclude that the function lnσ(z − a) is linearly doubly quasi-periodic
with the proper polynomials

P1(z) = δ1z + ω1 + ln(−1), Q1(z) = δ2z + iω2 + ln(−1).

From the Definition 1.7 and the Theorem 1.1 immediately follows the
following

Theorem 1.7. If the polynomially doubly quasi-periodic function of k-
order is differentiable k-times, then its derivative of k-order is the doubly
quasi-periodic function.

Theorem 1.8. The polynomially doubly quasi-periodic holomorphic func-
tion of k-order holomorphic in every finite region of z-plane is the polyno-
mial of k + 1-order.

For example the linearly doubly quasi-periodic holomorphic function is
representable in the form

F (z) = Az2 + Bz + C,

where A, B, C are an arbitrary given constants and the proper polynomials
of this function are

P1(z) = 4Aω1z + 4Aω2
1 + 2Bω1,

Q1(z) = 4Aiω2z − 4Aω2
2 + 2Biω2.

(1.6)

Definition 1.9. The function Φ(z) is called sectionally holomorphic poly-
nomially doubly quasi-periodic with the jump line L, if it has the following
properties:

1. It is holomorphic in each finite region not containing points of the
line L;

2. Φ(z) is continuous on L from the left and from the right, with the pos-
sible exception of the points c1, c2, . . . , cq, near which the following condition
is fulfilled

|Φ(z)| ≤
C

|z − c|α
,

where c is one of the points c1, c2, . . . , cq, and C and α are the certain real
constants, α < 1;

3. The function Φ(z) is polynomially doubly quasi-periodic in S+ and S−

i.e.,

Φ(z + 2ω1) = Φ(z) + Pk1
(z), Φ(z + 2iω2) = Φ(z) + Qk2

(z), z ∈ S+,

Φ(z + 2ω1) = Φ(z) + Pk3
(z), Φ(z + 2iω2) = Φ(z) + Qk4

(z), z ∈ S−,

where Pk1
, Qk2

, Pk3
, Qk4

are the polynomials of degree k1, k2, k3, k4

respectively.
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Definition 1.10. The function Φ(z) defined in the doubly-periodic do-
main is called exponentially doubly quasi-periodic if the following conditions
are fulfilled

1. Φ(z + 2ω1) = Φ(z) exp(Pk1
(z)) ,

2. Φ(z + 2iω2) = Φ(z) exp(Qk2
(z)),

where Pk1
and Qk2

are the definite polynomials of the k1 and k2 orders
respectively, k = max(k1, k2).

This class of functions we denote by Pe(k).

2. The Cauchy Type Integral With the Weierstrass Kernel

Now let us consider the function

Φ(z) =
1

2πi

∫

L00

ϕ(t) ζ(t − z) dt, z /∈ L, (2.1)

where ζ is the Weierstrass “ζ-function” for the periods 2ω1, 2iω2, ϕ(t) is the
given doubly-periodic function of Muskhelishvili H∗ class on L00 [10]:

Definition 2.1. If the function ϕ(t), given on L, satisfies the Holder
condition on every closed part of L00 not containing the finite number of
points points ci (i = 1, . . . , p); of L00, and if at this points it is of the form

ϕ(t) =
ϕ∗

i (t)

(t − ci)α
, 0 < α < 1,

where ϕ∗
i (t) belongs to the class H on L00, then ϕ(t) will be said to belong

to the class H∗ on L00.

Integrals of this type was first considered by Sedov [12].
The integral given by (2.1) is the Cauchy type integral and by (1.4)

represents the doubly-quasi periodic function with the addends

γ1 = −
δ1

2πi

∫

L00

ϕ(t) dt, γ2 = −
δ2

2πi

∫

L00

ϕ(t) dt.

Taking into account the representation (1.3) we have

Φ±(t0) = ±
ϕ(t0)

2
+

1

2πi

∫

L00

ϕ(t) ζ(t − t0) dt, t0 ∈ L, (2.2)

where by Φ+(t0) and Φ−(t0) are denoted the boundary limits from the left
and from the right of L respectively.

The integral (2.1) is called the Cauchy type integral with the Weierstrass
kernel.

The formulas (1.3), (1.4) and (2.1) implies the following theorem [5]
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Theorem 2.1. The function

Φ(z) =
1

2πi

∫

L00

ϕ(t) ζ(t − z) dt + Az + B, (2.3)

where A and B are an arbitrary fixed constants, represents the doubly quasi-
periodic function with the jump line L and with the addends

γ1 = −
δ1

2πi

∫

L00

ϕ(t) dt + 2Aω1, γ2 = −
δ2

2πi

∫

L00

ϕ(t) dt + 2Aiω2.

The function (2.3) is doubly-periodic if and only if A = 0 and
∫

L00

ϕ(t) dt = 0.

From the Theorems 2.1 and 1.5 follows that the function (2.3), is the the
general solution of the following boundary value problem

Problem 2.1. Find sectionally holomorphic doubly quasi-periodic func-
tion Φ(z) with the jump line L satisfying the boundary condition

Φ+(t0) − Φ−(t0) = ϕ(t0), t0 ∈ L,

where ϕ(t) is the given doubly periodic function on L, belonging to the
Muskhelishvili H∗ class on L00 [10].

From the Theorems 2.1 and 1.8 follows that the function

Φ(z) =
1

2πi

∫

L00

ϕ(t) ζ(t − z) dt + Pk+1(z), (2.4)

where Pk+1(z) is an arbitrary polynomial of degree k + 1, is the general
solution of the following boundary value problem

Problem 2.2. In the class of functions P(k) find the sectionally-
holomorphic function Φ(z) with the jump line L, satisfying the boundary
condition

Φ+(t0) − Φ−(t0) = ϕ(t0), t0 ∈ L,

where ϕ(t0) is the given doubly periodic function on L of Muskhelishvili H∗

class on L00.

In the sequel we will use the solutions of the following auxiliary problem

Problem 2.3. Find doubly-periodic function Φ(z) with the jump line
L sectionally holomorphic everywhere with the possible exception of the
points β1+2mω1+2niω2, β2+2mω1+2niω2, . . . , βq +2mω1+2niω2; m, n =
0,±1, . . . ; β1, β2, . . . , βq ∈ S00 −L00, βi 6= βj , i 6= j, i, j = 1, . . . , q, where it
may has the simple poles, also the following boundary condition is satisfied

Φ+(t0) − Φ−(t0) = ϕ(t0), t0 ∈ L,

where ϕ(t0) is the given doubly periodic function on L of Muskhelishvili H∗

class on L00.
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At first we will find the solution with the simple poles at the points
β1 + 2mω1 + 2niω2, m, n = 0,±1, . . . . By the Theorem 2.1 and the formula
(1.4) we obtain

Φ(z) =
1

2πi

∫

L00

ϕ(t)
[

ζ(t − z) − ζ(β1 − z)
]

dt + C, (2.5)

where C is an arbitrary constant, is the solution of the Problem 2.3.
Let us check the uniqueness. If Φ1(z) and Φ2(z) are two possible so-

lutions, then (Φ1(t) − Φ2(t))
+ = (Φ1(t) − Φ2(t))

−, t ∈ L, so the function
Φ1(z)−Φ2(z) is doubly-periodic holomorphic in every finite region of z-plane
with the simple poles at the points β1 + 2mω1 + 2niω2; m, n = 0,±1, . . . or
with no poles. By the Theorems 1.1 and 1.2 we obtain Φ1(z) − Φ2(z) = C,
where C is an arbitrary constant.

Now consider the case, when the solution has the poles at the points
β1 + 2mω1 + 2niω2, β2 + 2mω1 + 2niω2, . . . , βq + 2mω1 + 2niω2; m, n =
0,±1,±2, . . . ; β1, . . . , βq ∈ S00 − L00, q > 1.

The function given by (2.5) is the particular solution of the Problem 2.3
in case of q > 1. Now let us check the solutions of the homogeneous problem.
The solution Φ0(z) of the corresponding homogeneous problem is doubly-
periodic having simple poles at the points β1 + 2mω1 + 2niω2, β2 + 2mω1 +
2niω2, . . . , βq +2mω1 +2niω2; m, n = 0,±1,±2, . . . . As the function Φ0(z)

satisfies the condition Φ+
0 = Φ−

0 , by the Theorem 1.6 it is representable in
the form

Φ0(z) = C
σ(z − α1)σ(z − α2) · · ·σ(z − αq)

σ(z − β1)σ(z − β2) · · ·σ(z − βq)
, (2.6)

where the constants α1, α2, . . . , αq satisfy the condition

α1 + α2 + · · · + αq = β1 + β2 + · · · + βq.

Taking into account (2.5) and (2.6) we conclude

Theorem 2.2. The solution of the Problem 2.3 exists and in case of
q > 1 the general solution is given by

Φ(z) =
1

2πi

∫

L00

ϕ(t)
[

ζ(t − z) − ζ(β1 − z)
]

dt+

+ C1
σ(z − α1)σ(z − α2) · · ·σ(z − αq)

σ(z − β1)σ(z − β2) · · ·σ(z − βq)
+ C2, (2.7)

where C1 and C2 are an arbitrary constant and the constants α1, α2, . . . , αq

satisfy the condition

α1 + α2 + · · · + αq = β1 + β2 + · · · + βq.

In case of q = 1 the solution of the Problem 2.3 is given by (2.7), where
C1 = 0.

Now let us consider the Problem of the type 2.2 for the class Pe(0).
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Problem 2.4. Find the function Φ(z) of the Pe(0) class with the jump
line L sectionally holomorphic everywhere with the possible exception of
the points β1 + 2mω1 + 2niω2, β2 + 2mω1 + 2niω2, . . . , βq + 2mω1 + 2niω2;
m, n = 0,±1, . . . ; β1, β2, . . . , βq ∈ S00 − L00,βi 6= βj , i 6= j, where it may
has the simple poles, also the following boundary condition is satisfied

Φ+(t0) − Φ−(t0) = ϕ(t0), t0 ∈ L, (2.8)

where ϕ(t0) is the given Holder continuous on L00 function of Pe(0) class
on L i.e.,

1. ϕ(t0 + 2ω1) = ϕ(t0) exp(γ1) ,

2. ϕ(t0 + 2iω2) = ϕ(t0) exp(γ2), t0 ∈ L,

where γ1 and γ2 are the given constants.

Consider the function

Φ∗(z) = Φ(z)
σ(z − b0)

σ(z − a0)
exp(Bz), z /∈ L

where the constants a0, b0, (b0 6∈ L, a0 ∈ S00) and B satisfy the system

δ1(a0 − b0) + B2ω1 = −γ1, δ2(a0 − b0) + B2iω2 = −γ2.

By (1.4) the solution of this system exists.
We obtain the doubly-periodic function with the poles at the points a0 +

2mω1+2niω2, β1 +2mω1 +2niω2, . . . , βq +2mω1 +2niω2; m, n = 0,±1, . . . ;
a0 ∈ S00 − L00. Multiplying both sides of (2.8) by the function

σ(t − b0)

σ(t − a0)
exp(Bt),

we obtain

Φ+
∗ (t0) − Φ−

∗ (t0) = ϕ(t0)
σ(t0 − b0)

σ(t0 − a0)
exp(Bt0), t0 ∈ L.

Hence the function Φ∗(z) is the solution of the Problem 2.3 and we conclude

Theorem 2.3. The solution of the Problem 2.3 exists and is given by

Φ(z) =
σ(z − a0)

σ(z − b0)
exp(−Bz)

[

1

2πi

∫

L00

ϕ0(t)
[

ζ(t − z) − ζ(a0 − z)
]

dt+

+ C1
σ(z − b∗0)σ(z − α1) · · ·σ(z − αq)

σ(z − a0)σ(z − β1) · · ·σ(z − βq)
+ C2

]

, (2.9)

where

C2 = −
1

2πi

∫

L00

ϕ0(t)
[

ζ(t − b0) − ζ(a0 − b0)
]

dt,

a0 − b0 =
−γ1iω2 + γ2ω1

πi
, B =

−δ1γ2 + δ2γ1

2πi
,
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C1 is an arbitrary chosen constant, the constants α1, α2, . . . , αq satisfy the
condition

b∗0 + α1 + α2 + · · · + αq = a0 + β1 + · · · + βq,

b∗0, is the point congruent to the point b0, b∗0 ∈ S00, and the function ϕ0(t)
is given by

ϕ0(t) = ϕ(t)
σ(t − b0)

σ(t − a0)
exp(Bt).

The solution with no poles is given by (2.9) for C1 = 0.

3. Definition of a Sectionally Holomorphic Linearly Doubly

Quasi-Periodic Function for a Given Discontinuity

Let the line L00 be the single closed contour and let us consider the
following problem

Problem 3.1. Find a sectionally holomorphic function Φ(z) of the class
P(1) , with the jump line L, for the given discontinuity

Φ+(t0) − Φ−(t0) = ϕ(t0), t0 ∈ L, (3.1)

where ϕ(t) is the given linearly doubly quasi-periodic function on L of H∗

class on L00, with the proper polynomials

P1(z) = α1z + β1,

Q1(z) = α2z + β2,
(3.2)

α1, α2, β1, β2 are the given constants.

Let us consider the function

Ψ(z) =

{

A lnσ(z − a) + Bζ(z − b) + A1z
2 + B1z + C1, z ∈ S+,

0, z ∈ S−,
(3.3)

where a and b are an arbitrary fixed points of the area S00 − (S+
001 + L00),

(S+
001 and S00 are the areas defined in §1), lnσ(z − a) is any fixed branch

holomorphic in S+, the constants A, B, A1, B1 will be defined in the sequel.
By (1.4) and (1.5) the function Ψ(z) is sectionally holomorphic linearly

doubly quasi-periodic with the jump line L and with the proper polynomials

P1(z) = Aδ1(z − a + ω1) + A ln(−1) + Bδ1 + 4A1ω1z+

+ 4A1ω
2
1 + 2B1ω1,

Q1(z) = Aδ2(z − a + iω2) + A ln(−1) + Bδ2 + 4A1iω2z−

− 4A1ω
2
2 + 2B1iω2,

(3.4)

satisfies the boundary conditions

Ψ+(t0) − Ψ−(t0) =

= A lnσ(t0 − a) + Bζ(t0 − b) + A1t
2
0 + B1t0 + C1, t0 ∈ L, (3.5)

where ln σ(t0−a) is the limiting value of the branch of the function lnσ(z−a)
holomorphic in S+.
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Consider a new unknown sectionally-holomorphic function Φ(z) − Ψ(z).
By (3.1) and (3.3) this function satisfies the following boundary condition

(

Φ(t0) − Ψ(t0)
)+

−
(

Φ(t0) − Ψ(t0)
)−

=

= ϕ(t0) − A lnσ(t0 − a) − Bζ(t0 − b) − A1t
2
0 − B1t0 − C1, t0 ∈ L. (3.6)

The constants A, B, A1, B1, we chose in such a way that the function in the
right-hand side of (3.6) will be doubly-periodic. By (3.2) and (3.4) they
should satisfy the system



















α1z + β1 = A
(

δ1z + δ1ω1 − δ1a + ln(−1)
)

+

+Bδ1 + 4A1ω1z + 4A1ω
2
1 + 2B1ω1,

α2z + β2 = A
(

δ2z + δ2iω2 − δ2a + ln(−1)
)

+

+Bδ2 + 4A1iω2z − 4A1ω
2
2 + 2B1iω2,

(3.7)

The solution of this system exists and this fact provides that the function
in the right-hand side of (3.6) is doubly-periodic.The solution of this system
is given in the sequel by the formula (3.9). Hence the function Φ(z)−Ψ(z)
is the linearly doubly quasi-periodic solution of the Problem 2.2

Φ(z) − Ψ(z) =
1

2πi

∫

L00

ϕ∗(t)ζ(t − z) dt + A0z
2 + B0z + C0, (3.8)

where A0, B0, C0 are an arbitrary fixed constants,

ϕ∗(t0)=ϕ(t0)−A lnσ(t0−a)−Bζ(t0−b)−A1t
2
0−B1t0−C1, t0∈L.

Let us check the uniqueness. If Φ1(z) and Φ2(z) are two possible so-
lutions, then (Φ1(t) − Φ2(t))

+ = (Φ1(t) − Φ2(t))
−, t ∈ L, so the function

Φ1(z) − Φ2(z) is of the class P (1) holomorphic in every finite region of z-
plane with no poles. By the Theorem 1.8 we obtain Φ1(z)−Φ2(z) = P2(z),
where P2(z) is an arbitrary polynomial of the second order.

Taking into account (3.3), (3.8) and the equalities

∫

L00

lnσ(t − a)ζ(t − z) dt =

{

−2πi lnσ(z − a), z ∈ S+,

0, z ∈ S−,

∫

L00

ζ(t − b)ζ(t − z) dt =

{

−2πiζ(z − b), z ∈ S+,

0, z ∈ S−,

∫

L00

ζ(t − b) dt = 0,

∫

L00

lnσ(t − a) dt = 0,

we conclude
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Theorem 3.1. The solution of the Problem 3.1 exists and is representable
in the form

Φ(z) =































1

2πi

∫

L00

ϕ(t)ζ(t − z) dt + 2A lnσ(z − a) + 2Bζ(z − b)+

+2A1z
2 + 2B1z + 2C1 + A0z

2 + B0z + C0, z ∈ S+,
1

2πi

∫

L00

ϕ(t)ζ(t − z) dt + A0z
2 + B0z + C0, z ∈ S−,

where C1, C0, A0, B0 are an arbitrary constants, a, b ∈ S00 − (S+
001 + L00).















































A =
α1iω2 − α2ω1

πi
, A1 =

δ1α2 − δ2α1

4πi
,

B =
1

πi

{

β1iω2 − β2ω1 − Aiω2ω1(δ1 − δ2) − Aπi(iω2 − ω1 − a)−

−4A1iω2ω1(ω1 + iω2)
}

,

B1 =
1

2πi

{

β2δ1 − β1δ2 + Aδ1δ2(ω1 − iω2) + Aπi(δ2 − δ1)+

+4A1(ω
2
1δ2 − ω2

2δ1)
}

.

(3.9)

4. On the Homogeneous Linear Conjugation Problem for the

class Pe(1)

Problem 4.1. Find a sectionally holomorphic function Φ0(z) of the
Pe(1) class with the jump line L, satisfying the condition Φ0(z) 6= 0 and the
following boundary condition

Φ+
0 (t0) = G(t0)Φ−

0 (t0), t0 ∈ L, (4.1)

where G(t0) is the given function on L of the Pe(1) class, G(t0) 6= 0, be-
longing to the H class on L00,:

G(t0 + 2ω1) = G(t0) exp(γ11t0 + γ12),

G(t0 + 2iω2) = G(t0) exp(γ21t0 + γ22), t0 ∈ L,
(4.2)

where γ11, γ12, γ21, γ22 are the given constants.

Let us denote by κ = 1
2π

[arg G(t)]L00
, the symbol [ ]L00

denotes the
increment of the expression in the brackets as the result of a circuit around
L00.

Let d be an arbitrary fixed point of S+
001 and let us introduce the function

G0(t) = σ−κ(t − d)G(t), where σ(t − d) is the Weierstrass σ-function. The
argument of lnG0(t) will return to its initial value after any circuit of the
contour L00. A branch of this function may be fixed arbitrary on L00. Hence
lnG0(t) is a definite one-valued function on L00. By (1.5) on every Lmn the
function lnG0(t) is defined as follows

lnG0(t) = lnG0(t − 2mω1 − 2niω2) + mP1(t − 2mω1 − 2niω2)+

+ nQ1(t − 2mω1 − 2niω2), t ∈ Lmn, m, n = 0,±1, . . . ,
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where

P1(t) = (γ11 − κδ1)t + γ12 − κ(−δ1d + δ1ω1 + ln(−1)),

Q1(t) = (γ21 − κδ2)t + γ22 − κ(−δ2d + δ2iω2 + ln(−1)), t0 ∈ L.
(4.3)

Hence ln G0(t) is the linearly doubly quasi-periodic with the proper poly-
nomials P1(t), Q1(t).

Let us introduce the new unknown, sectionally holomorphic function

Ψ(z) =

{

Φ0(z), z ∈ S+,

σκ(z − d)Φ0(z), z ∈ S−.

The condition (4.1) may be written

Ψ+(t) = G0(t)Ψ−(t), t ∈ L.

By taking logarithms of this equality one obtains

ln Ψ+(t) − ln Ψ−(t) = lnG0(t). (4.4)

It will be sufficient to obtain only some particular solution of the prob-
lem (4.4). Assuming ln Ψ(z) to be one valued by (1.5) we conclude that this
function is sectionally holomorphic linearly doubly quasi-periodic. Taking
into account the Theorem 3.1 we obtain a particular solution of the prob-
lem (4.4)

ln Ψ(z) =











































1

2πi

∫

L00

[

lnG0(t)− A lnσ(t−a)− Bζ(t−b)
]

ζ(t−z) dt+

+A lnσ(z−a)+Bζ(z−b)+2A1z
2+2B1z+P2(z), z∈S+,

1

2πi

∫

L00

[

lnG0(t) − A lnσ(t − a) − Bζ(t − b)
]

×

×ζ(t − z) dt + P2(z), z ∈ S−.

where P2(z) is an arbitrary polynomial of the second order and the constants
A, B, A1, B1 are defined by the equalities (3.9), where

α1 = γ11 − κδ1, β1 = γ12 − κ

(

− δ1d + δ1ω1 + ln(−1)
)

,

α2 = γ21 − κδ2, β2 = γ22 − κ

(

− δ2d + δ2iω2 + ln(−1)
)

.
(4.5)

Ψ(z) is sectionally-holomorphic everywhere different from zero. By direct
verification it is seen that a particular solution of the Problem 4.4 is

Ψ(z) =











σA(z − a)×

× exp
{

Γ(z)+Bζ(z−b)+2A1z
2+2B1z+P2(z)

}

, z∈S+,

exp
{

Γ(z) + P2(z)
}

, z ∈ S−,

(4.6)

where

Γ(z) =
1

2πi

∫

L00

[

lnG0(t) − A lnσ(t − a) − Bζ(t − b)
]

ζ(t − z) dt. (4.7)



76 N. KHATIASHVILI

From the particular solution (4.6) of the problem (4.4) the particular
solution of the original Problem 4.1 follows directly

Φ0(z)=











σA(z − a)×

× exp
{

Γ(z)+Bζ(z−b)+2A1z
2+2B1z+P2(z)

}

, z∈S+,

σ−κ(z − d) exp
{

Γ(z)+P2(z)
}

, z ∈ S−,

(4.8)

where Γ(z) is given by (4.7).
Let us check the uniqueness. Let Φ1(z) and Φ2(z) will be two possible

solutions of the Problem 4.1, then by (4.1) we have

(Φ1(t)

Φ2(t)

)+

=
(Φ1(t)

Φ2(t)

)−

.

Consequently the function ln Φ1(z)
Φ2(z) is holomorphic in every finite region

of z-plane and of the class Pe(1). The Theorem 1.8 implies

Φ1(z)

Φ2(z)
= exp(Az2 + Bz + C).

Hence (4.8) is the general solution of the Problem 4.1.
If the function lnG(t) is doubly quasi-periodic and it is required to find

solutions of the Problem 4.1 for which ln Φ0(z) is doubly quasi-periodic then
the following condition must be fulfilled

Φ0(z + 2ω1) = Φ0(z) expγ1,

Φ0(z + 2iω2) = Φ0(z) expγ2.

This conditions and (1.5), (4.8) implies

−κδ1 + 4A0ω1 = 0, −κδ2 + 4A0iω2 = 0,

−κδ1 + 4ω1(2A1 + A0) = 0, −κδ2 + 4iω2(2A1 + A0) = 0

and by the condition (1.4) we obtain κ = A = A0 = A1 = 0.
So we conclude

Theorem 4.1. The solution of the Problem 4.1 exists and all solutions
are representable in the form

Φ0(z) =







































σA(z − a) exp

{

1

2πi

∫

L00

ϕ∗(t) ζ(t − z) dt+

+Bζ(z − b) + 2A1z
2 + 2B1z + P2(z)

}

, z ∈ S+,

σ−κ(z−d) exp

{

1

2πi

∫

L00

ϕ∗(t)ζ(t−z)dt+P2(z)

}

, z ∈ S−,

(∗)

where ϕ∗(t) is given by

ϕ∗(t) = lnG0(t) − A lnσ(t − a) − Bζ(t − b).



ON LINEAR CONJUGATION PROBLEMS 77

a, b, d are an arbitrary fixed points, a, b ∈ S00 − (S+
001 + L00), d ∈ S+

001, A,
A1, B, B1 are the certain constants given by the (3.9), (4.5), P2(z) is an
arbitrary polynomial of the second order, P2(z) = A0z

2 + B0 + C0,

G0(t) = σ−κ(t − d)G(t), κ =
1

2π
[argG(t)]L00

.

If lnG(t) is doubly quasi-periodic the solution of the Problem 4.1 for
which ln Φ0(z) is doubly quasi-periodic exists if and only if κ = 0 and is
given by (∗), where

A = A1 = 0, B =
1

πi
(γ12iω2 − γ22ω1), B1 =

1

2πi
(γ22δ1 − γ12δ2).

In the case when the function G(t) is doubly-periodic the solution of the
Problem 4.1 is given by (∗), where A = −κ, B = −κ(a − d), the solutions
for which ln Φ0(z) is doubly quasi-periodic exists if and only if κ = 0 and is
given by

Φ0(z) = exp

{

1

2πi

∫

L00

ϕ∗(t) ζ(t − z) dt + Bz + C

}

,

where B and C are an arbitrary chosen constants.
Note. In the case when the function G(t) is doubly-periodic and a = d ∈

L00 the solution of the Problem 4.1 is given by

Φ0(z) = σ−κ(z − d) exp

{

1

2πi

∫

L00

lnG(t)ζ(t − z) dt + P2(z)

}

,

Now we consider the case when the function G(t) is of the Pe(0) class.

Problem 4.2. Find the function Ψ0(z) of the Pe(0) class with the jump
line L sectionally holomorphic everywhere with the possible exception of
the finite number of points of the area S00 − L00 where it can have simple
poles and Ψ0(z) satisfies the boundary condition

Ψ+
0 (t0) = G(t0)Ψ−

0 (t0), t0 ∈ L, (4.9)

where G(t) is the given function on L Holder continuous on L00, G(t) 6= 0,
and of Pe(0) class, i.e.,

G(t0 + 2ω1) = G(t0) exp(γ12), G(t0 + 2iω2) = G(t0) exp(γ22), t0 ∈ L,

The Theorem 4.1 implies that the solutions which have not zeros or
poles of this problem exists only in the case κ = 0. So we admit that
the solution of the Problem 4.2 is non-zero everywhere in z except the
points a1 + 2mω1 + 2iω2, a2 + 2mω1 + 2iω2, . . . , aλ + 2mω1 + 2iω2; m, n =
0,±1,±2, . . . ; a1, a2, . . . , aλ ∈ S00 − L00, λ > 0, where (as it will be clear
in the sequel λ = |κ|) it may have simple poles or zeros. By the formulas
(1.5) and (4.9) the function

Φ(z) =
Ψ0(z)

σ(z − a1)σ(z − a2) . . . σ(z − aλ)
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in case of zeros, or

Φ(z) = Ψ0(z)σ(z − a1)σ(z − a2) . . . σ(z − aλ),

in case of poles, satisfies the conditions of the Problem 4.1. Thus, applying
the Theorem 4.1 we conclude

Theorem 4.2. The solution of the Problem 4.2 exists
1. For κ > 0, the solutions has simple zeros, and is given by

Ψ0(z)=



































































Cσ(z−a1) . . . σ(z−aκ)σ−κ(z−a)×

× exp

{

1

2πi

∫

L00

ϕ∗(t)ζ(t − z)dt+
1

2πi
(γ22δ1−γ12δ2)z+

+
1

πi
(γ12iω2−γ22ω1)ζ(z−b)+B0z+C0

}

, z∈S+,

Cσ(z − a1) . . . σ(z − aκ)σ−κ(z − d)×

× exp

{

1

2πi

∫

L00

ϕ∗(t)ζ(t − z) dt+B0z+C0

}

, z∈S−,

(4.10)

where ϕ∗(t) is given by

ϕ∗(t) = lnG0(t) + κ lnσ(t − a) −
1

πi
(γ12iω2 − γ22ω1)ζ(t − b).

a, b, d are an arbitrary fixed points, a, b ∈ S00 − (S+
001 +L00), d ∈ S+

001, B0,
C0 are an arbitrary fixed constants, a1, . . . , aκ are an arbitrary constants,

G0(t) = σ−κ(t − d)G(t), κ =
1

2π
[argG(t)]L00

.

2. For κ < 0, the solutions of the Problem 4.2 are not holomorphic
everywhere. They have the simple poles at the points a1 +2mω1 +2iω2, a2 +
2mω1 + 2iω2, . . . , a−κ + 2mω1 + 2iω2; m, n = 0,±1,±2, . . . , a1, . . . , a−κ ∈
S00 − L00, and are given by

Ψ0(z)=



















































































Cσ−1(z−a1) . . . σ−1(z−a−κ)σ−κ(z−a)×

× exp

{

1

2πi

∫

L00

ϕ∗(t)ζ(t − z) dt+

+
1

πi
(γ12iω2 − γ22ω1)ζ(z − b)+

+
1

2πi
(γ22δ1−γ12δ2)z+B0z+C0

}

, z ∈ S+,

Cσ−1(z − a1) . . . σ−1(z − a−κ)σ−κ(z − d)×

×exp

{

1

2πi

∫

L00

ϕ∗(t)ζ(t−z)dt+B0z+C0

}

, z ∈ S−,

(4.11)
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3. For κ = 0 the solution of the Problem 4.2 exists and is given by

Ψ0(z) =























































exp

{

1

2πi

∫

L00

ϕ∗(t) ζ(t − z) dt+

+
1

πi
(γ12iω2 − γ22ω1)ζ(z − b)+

+
1

2πi
(γ22δ1 − γ12δ2)z + B0z + C0

}

, z ∈ S+,

exp

{

1

2πi

∫

L00

ϕ∗(t) ζ(t − z) dt+B0z + C0

}

, z ∈ S−,

(4.12)

where ϕ∗(t) is given by

ϕ∗(t) = lnG0(t) −
1

πi
(γ12iω2 − γ22ω1)ζ(t − b),

B0 and C0 are an arbitrary chosen constants.
If the function G(t) is doubly-periodic,then the solutions of the Prob-

lem 4.2 are given by (4.10), (4.11), (4.12) respectively for γ12 = γ22 = 0,
and the doubly-periodic are obtained when the constants a1, . . . , aκ, B0 sat-
isfy the conditions:

1. For κ > 0

−δ1

(

a1 + · · · + aκ +
1

2πi

∫

L00

ϕ∗(t) dt

)

+ κδ1d + 2B0ω1 = 2πik1,

−δ2

(

a1 + · · · + aκ +
1

2πi

∫

L00

ϕ∗(t) dt

)

+ κδ2d + 2B0iω2 = 2πik2,

2. For κ < 0

δ1

(

a1 + · · · + a−κ −
1

2πi

∫

L00

ϕ∗(t) dt

)

+ κδ1d + 2B0ω1 = 2πik1,

δ2

(

a1 + · · · + a−κ −
1

2πi

∫

L00

ϕ∗(t) dt

)

+ κδ2d + 2B0iω2 = 2πik2,

3. For κ = 0

−δ1
1

2πi

∫

L00

ϕ∗(t) dt + 2B0ω1 = 2πik1,

−δ2
1

2πi

∫

L00

ϕ∗(t) dt + 2B0iω2 = 2πik2,

where k1 and k2 are the definite integers.
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5. The Non-homogeneous Linear Conjugation Problem in the

Case of Closed Contours

Let the doubly-periodic line L defined in §1 consists of closed contours
and let the line L00 be the single closed contour.

Problem 5.1. Find sectionally holomorphic function Φ(z) of the Pe(1)
class with the jump line L satisfying the boundary condition

Φ+(t0) = G(t0)Φ−(t0) + g(t0), t0 ∈ L, (5.1)

where G(t0) and g(t0) are the functions given on L, G(t0) 6= 0, Holder
continuous on L00 and of the class Pe(1), i.e.,

1. G(t + 2ω1) = G(t) exp(γ11t + γ12) ,

2. G(t + 2iω2) = G(t) exp(γ21t + γ22),

1. g(t + 2ω1) = g(t) exp(α11t + α12) ,

2. g(t + 2iω2) = g(t) exp(α21t + α22),

where γij , αij ; i, j = 1, 2 are the given constants.

The homogeneous problem corresponding to the Problem 5.1 is the Prob-
lem 4.1, where we assume































































α11z + α12 = A(δ1z + δ1ω1 − δ1a + ln(−1)) + Bδ1+

+(4A1 + 4A0)ω1z + (4A1 + 4A0)ω
2
1+

+(2B1 + 2B0)ω1 −
δ1

2πi

∫

L00

ϕ∗(t) dt,

α21z + α22 = A(δ2z + δ2iω2 − δ2a + ln(−1)) + Bδ2+

+(4A1 + 4A0)iω2z − (4A1 + 4A0)ω
2
2+

+(2B1 + 2B0)iω2 −
δ2

2πi

∫

L00

ϕ∗(t) dt,

(5.2)

where A, B, A1, B1 are the definite constants given by (3.9) and (4.5).
From the system (5.2) we obtain























A0 =
δ1(α21 − γ2.1) − δ2(α11 − γ11)

4πi
,

B0 =
1

2πi

{

(α22 − γ22)δ1 − (α12 − γ12)δ2−

−κπi(δ2 − δ1) + 4A0(ω
2
1δ2 − ω2

2δ1)
}

.

(5.3)

The formula (5.2) provides that the function g(t)

Φ+

0
(t)

will be doubly-periodic

in its domain of definition. From (4.1) and (5.1) we get

Φ+(t)

Φ+
0 (t)

−
Φ−(t)

Φ−

0 (t)
=

g(t)

Φ+
0 (t)

, t ∈ L.
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We admit that the function Φ(z)
Φ0(z) is doubly-periodic sectionally holomor-

phic with no poles.So applying the Theorem 2.1 we obtain the following

Theorem 5.1. The solution of the Problem 5.1 exists if and only if
∫

L00

g(t)

Φ+
0 (t)

dt = 0,

and is given by

Φ(z) =
Φ0(z)

2πi

∫

L00

g(t)

Φ+
0 (t)

ζ(t − z) dt + CΦ0(z),

Φ0(z) is given by (4.8), where A0, B0 are given by (5.3) and C is an arbitrary
chosen constant.

The case when G(t) is of the Pe(0) class we will consider separately.

Problem 5.2. Find sectionally holomorphic function Φ(z) of Pe(0) class
with the jump line L satisfying the boundary condition

Φ+(t0) = G(t0)Φ−(t0) + g(t0), t0 ∈ L, (5.4)

where G(t0) and g(t0) are Holder continuous on L00 functions of class Pe(0)
given on L, G(t0) 6= 0,

1. G(t + 2ω1) = G(t) exp(γ12) , 2. G(t + 2iω2) = G(t) exp(γ22),

1. g(t + 2ω1) = g(t) exp(α12) , 2. g(t + 2iω2) = g(t) exp(α22),

where γ12, γ22, α12, α22 are the given constants.

Let us consider the homogeneous problem corresponding to the Prob-
lem 5.2. By the Theorem 4.3 the solutions of the homogeneous problem in
the case κ < 0 are only zeros, in the case κ > 0 are given by (4.10) and in
the case κ = 0 the solution is given by (4.12).

For the constructing of the solution of non-homogeneous problem we will
use the solutions of the Problem 4.2 given by the formulas (4.10), (4.11),
(4.12).

From (4.9) and (5.4) we get

Φ+(t)

Ψ+
0 (t)

−
Φ−(t)

Ψ−

0 (t)
=

g(t)

Ψ+
0 (t)

, t ∈ L.

where Ψ0(z) is given by (4.10), (4.11) or (4.12).

In case of κ > 0 the function Φ(z)
Ψ0(z) is doubly-periodic sectionally holo-

morphic except the points a1 + 2mω1 + 2niω2, a2 + 2mω1 + 2niω2, . . . , aκ +
ω1 + 2niω2; m, n = ±1,±2, . . . , where it has the simple poles.

In case of κ ≤ 0 the function Φ(z)
Ψ0(z) is doubly-periodic sectionally holo-

morphic.
Hence applying the Theorems 2.1 and 4.3 we conclude
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Theorem 5.2.

1. In the case κ > 0 the solution of the Problem 5.2 exists and is given by

Φ(z) =
Ψ0(z)

2πi

∫

L00

g(t)

Ψ+
0 (t)

[

ζ(t − z) − ζ(a1 − z)
]

dt

+ C1
σ(z − β1)σ(z − β2) · · ·σ(z − βκ)

σ(z − a1)σ(z − a2) · · ·σ(z − aκ)
Ψ0(z) + C2Ψ0(z), (5.5)

Ψ0(z) is given by (4.10), where A0, B0 are given by (5.3) for γ11 = γ12 =
α11 = α12 = 0, C1, C2 are an arbitrary constants and the constants
β1, . . . , βκ satisfying the condition β1 + · · · + βκ = a1 + · · · + aκ.

In case of κ = 1 the solution of the problem is given by (4.3) for C1 = 0.
2. In case of κ < 0 the unique solution of the Problem 5.2 exists if and

only if
∫

L00

g(t)

Ψ+
0 (t)

dt = 0,

1

2πi

∫

L00

g(t)

Ψ+
0 (t)

ζ(t − a1) dt−
1

2πi

∫

L00

g(t)

Ψ+
0 (t)

ζ(t − ak) dt = 0,

k = 2, . . . ,−κ,

and is given by

Φ(z) =
Ψ0(z)

2πi

∫

L00

g(t)

Ψ+
0 (t)

ζ(t − z) dt−

−
Ψ0(z)

2πi

∫

L00

g(t)

Ψ+
0 (t)

ζ(t − a1) dt, (5.6)

where Ψ0(z) is given by (4.11), where A0, B0 are given by (5.3) for γ11 =
γ12 = α11 = α12 = 0. For κ = 0 the unique solution exists if and only if

∫

L00

g(t)

Ψ0(t)
dt = 0

and is given by

Φ(z) =
Ψ0(z)

2πi

∫

L00

g(t)

Ψ+
0 (t)

ζ(t − z) dt + CΨ0(z),

where Ψ0(z) is given by (4.12), where A0, B0 are given by (5.3) for γ11 =
γ12 = α11 = α12 = 0, and C is an arbitrary constant.

If the function G(t) is doubly-periodic the solutions of the Problem 5.2
are given by (5.5), (5.6), (5.7) respectively for γij = 2πikij; i, j = 1, 2, where
kij are the definite integers.
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Note. In the case when the contour L00 consists of several non-intersected
closed contours Lj

00, j = 1, 2, . . . , k, the solution of the corresponding ho-
mogeneous Problem 5.1 is representable by

Φ0(z) = Φ1(z)Φ2(z) . . .Φk(z),

where Φ1(z), Φ2(z), . . . , Φk(z) are the Canonical functions of the homoge-

neous problems of 4.2 type for Lj
00, j = 1, 2, . . . , k, respectively, we will

chose the different zeros or poles for every Φj(z), j = 1, 2, . . . , k. So the
Theorems 5.1 and 5.2 are also true for this case.
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